VACUUMSCHMELZE		Datasheet				Item no.: T60404-N4647-P985			
K-No.:3026	61	3A Dif for 5V For the ele DC, AC, p the primar	ferential Currer Supply Voltage ectronic measurement of c ulsed, with galvanic isol y and the secondary circuit	at Sensor urrent: ation between t	5	A	Date: 18	3.02.2022	
Customer:	Stand	dard typ	be C	ustomers Part no:			Page 1	of 3	
Description Characteristics Applications • Closed loop • excellent accuracy • wery low offset current • Compensation) Current • excellent accuracy • wery low offset current • Printed circuit board • very low temperature dependency and offset drift • Solar inverter • Casing and materials UL-listed • reduced offset rinple • reduced offset rinple								nary applications:	
Electrical of	data -	Rating	<u>is</u>						
Ipn Ian Vout Vout(0) ¹ Vout(Error) Vref)	Prim Diffe Outp Outp in ca inter	ary nominal RMS co erential rated RMS co out voltage @ I∆P out voltage @ IP=0A ase of error (current nal reference voltag	urrent urrent , ϑ _A =25°C sensor) V _{OUT} < 0.5V is se e	et	$200 \\ 3 \\ V_{REF} \pm (1.2 \\ V_{REF} \pm 0.01 \\ < 0.5 \\ 2.5 \pm 0.005 \\ \end{array}$	* Iap / Ian)	A A V V V V	
V _{REF} (test cu V _{OUT} (test c	urrent) urrent)	exte ² Refe ² Outp	rnal reference voltag erence voltage (exte put voltage @ VREF =	ge range rnal) = 00.1V		1.43.5 0 0.1 V _{OUT} (0) + 0.	17±0.06	V V V	
¹ with switc In this tim ² If V _{REF} is s	ching o the the o set ext	Turn on and a putput is ternal to	is count for test wind fter "test current" the s set to $V_{OUT} < 0.5V$. o 00.1V an interna	ding e sensor is degaussed b I test current is generate	y an interna d.	20 Il AC-current	for about	110ms.	
Accuracy -	– Dyn	amic r	orformanco data						
					min.	typ.	max.	Unit	
I _{∆P,max}	N	Max. me	easuring range (diffe	rential current)	min. ±5	typ.	1 5	Unit A	
I _{∆P,max} X ε∟	N A L	Max. me Accurac Linearity	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$	rential current)	min. ±5	typ.	max. 1.5 1	Unit A % %	
I _{ΔP,max} X ε _L V _O	N A L	Max. me Accurac Linearity Offset vo	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ obtage @ I _P = 0A, ϑ_A	rential current) = 25°C	min. ±5	typ.	max. 1.5 1 10	Unit A % M WV	
$I_{\Delta P,max}$ X ϵ_L V_O $\Delta V_O/\Delta \vartheta$	N A L C	Max. me Accurac Linearity Offset vo Fempera	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C'$ oltage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @	rential current) = 25°C I _P =0A, ϑ _A	min. ±5	typ.	max. 1.5 1 10	Unit A % mV mV/°C	
$I_{\Delta P,max}$ X ϵ_L V_O $\Delta V_O/\Delta \vartheta$ t_r f	N 4 C 7 F F	Max. me Accurac Linearity Offset vo Fempera Respons	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ obtage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cv bandwidth	rential current) = 25°C Ip=0A, ອ _A	min. ±5	typ. 0.06 30	max. 1.5 1 10	Unit Α % mV mV/°C μs kHz	
$I_{\Delta P,max}$ X ε _L V _O $\Delta V_O/\Delta \vartheta$ t _r f General da	N 2 1 0 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	Max. me Accurac Linearity Offset vo Fempera Respons Frequen	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ oltage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth	rential current) = 25°C I _P =0A, ϑ _A _N	min. ±5 DC10	typ. 0.06 30	max. 1.5 1 10	Unit Α % mV mV/°C μs kHz	
$I_{\Delta P,max}$ X ε _L V _O $\Delta V_O/\Delta \vartheta$ tr f General da ϑ_A	N 2 4 7 7 7 8 7 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9	Max. me Accurac Linearity Offset vo Fempera Respons Frequen	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ obtage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth	rential current) = 25°C IP=0A, ϑ _A N	min. ±5 DC10	typ. 0.06 30	max. 1.5 1 10 105 105	Unit Α % mV mV/°C μs kHz	
$I_{\Delta P,max}$ X ε _L V _O $\Delta V_O/\Delta \vartheta$ tr f General da ϑ_A ϑ_S ϑ_{Max}	N 4 C 7 F F A <u>ata</u> 7	Max. me Accurac Linearity Offset vo Fempera Respons Frequen Ambient	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ obtage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth	rential current) = 25°C IP=0A, ϑ_A N erature (acc. to M3101) primary conductor	min. ±5 DC10 -40 -40	typ. 0.06 30	max. 1.5 1 10 105 105 115	Unit Α % mV mV/°C μs kHz °C °C °C	
$I_{\Delta P,max}$ X $ε_L$ V _O $\Delta V_O/\Delta \vartheta$ tr f General da ϑ_A ϑ_S ϑ_{busbar} m	P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Max. me Accurac Linearity Offset vo Tempera Respons Frequen Ambient Ambient Permiss Mass	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ obtage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth coperation air temper storage temperature of p	rential current) = $25^{\circ}C$ IP=0A, ϑ_A N erature re (acc. to M3101) primary conductor	min. ±5 DC10 -40 -40	typ. 0.06 30	max. 1.5 1 10 105 105 115	Unit A % mV mV/°C μs kHz °C °C °C g	
$ \begin{array}{c} I_{\Delta P,max} \\ X \\ \varepsilon_L \\ V_O \\ \Delta V_O / \Delta \vartheta \\ tr \\ f \\ General da \\ \vartheta_A \\ \vartheta_S \\ \vartheta_{busbar} \\ m \\ V_C \end{array} $	N 4 C 7 F 8 A 7 F 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Max. me Accurac Linearity Offset vo Fempera Respons Frequen Ambient Ambient Permiss Mass Supply v	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ obtage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth coperation air temper storage temperatur ible temperature of p voltage	rential current) = 25°C I _P =0A, ϑ_A N erature G (acc. to M3101) primary conductor	min. ±5 DC10 -40 -40 4.75	typ. 0.06 30 175 5	max. 1.5 1 10 105 105 115 5.25	Unit A % mV mV/°C μs kHz °C °C °C °C g V	
$I_{\Delta P,max}$ X $ε_L$ V_O $\Delta V_O/\Delta \vartheta$ t_r f General da ϑ_A ϑ_S ϑ_{busbar} m V_C I_C 1)	N L C F F Ata F F S	Accurac Linearity Offset vo Tempera Respons Frequen Ambient Ambient Permiss Mass Supply vo	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ obtage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth coperation air temper storage temperature ible temperature of p voltage current at I _P = 0A an	rential current) = 25°C IP=0A, ϑ_A N erature re (acc. to M3101) primary conductor d RT	min. ±5 DC10 -40 -40 4.75	typ. 0.06 30 175 5 15	max. 1.5 1 10 105 105 115 5.25	Unit A % mV mV/°C μs kHz °C °C °C °C g V mA	
$I_{\Delta P,max}$ X ε _L V _O $\Delta V_O/\Delta \vartheta$ tr f General da ϑ_A ϑ_S ϑ_{busbar} m V _C I _C I_S Clear, pri-sec I_S Screan pri ago	N A L C T F ata A F S S S S S S	Max. me Accurac Linearity Offset vo Fempera Respons Frequen Ambient Permiss Mass Supply v Supply o Clearan	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ oltage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth : operation air temper : storage temperature ible temperature of p voltage current at I _P = 0A an Ce (component without s	rential current) = 25°C $I_P=0A, \vartheta_A$ N erature re (acc. to M3101) primary conductor d RT solder pad) older pad)	min. ±5 DC10 -40 -40 4.75 12 13	typ. 0.06 30 175 5 15	max. 1.5 1 10 105 105 115 5.25	Unit A % mV mV/°C μs kHz °C °C °C °C °C g V mA mm	
$I_{\Delta P,max}$ X $ε_L$ V _O $\Delta V_O/\Delta \vartheta$ tr f General da ϑ_A ϑ_S ϑ_{busbar} m V _C I _C ¹⁾ Sclear, pri-sec ¹⁾ Sclear, pri-sec ¹⁾ Sclear, pri-sec	N 2 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Max. me Accurac Linearity Offset vo Fempera Respons Frequen Ambient Permiss Mass Supply v Supply v Clearan Creepag Clearan	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ obtage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth coperation air temperature storage temperature of p voltage current at I _P = 0A an Ce (component without s Ge (component without s Ce	rential current) = $25^{\circ}C$ IP=0A, ϑ_A N erature re (acc. to M3101) primary conductor d RT solder pad) older pad)	min. ±5 DC10 -40 -40 4.75 12 13 7	typ. 0.06 30 175 5 15	max. 1.5 1 10 105 105 115 5.25	Unit A % mV mV/°C μs kHz °C °C °C g V w MA mm mm mm	
$I_{\Delta P,max}$ X $ε_L$ V_O $\Delta V_O/\Delta \vartheta$ t_r f General da ϑ_A ϑ_S ϑ_{busbar} m V_C I_C $^{1)}S_{clear, pri-sec}$ $^{1)}S_{clear, pri-sec}$ $^{1)}S_{clear, pri-risec}$ $^{1)}S_{clear, pri-risec}$	N A L C T F ata A F S C	Max. me Accurac Linearity Offset vo Fempera Respons Frequen Ambient Permiss Mass Supply v Supply v Clearan Creepag Clearan	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ oltage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth : operation air temper : storage temperature ible temperature of p voltage current at I _P = 0A an Ce (component without s Ce (component without s Ce (component without s	rential current) = $25^{\circ}C$ IP=0A, ϑ_A N erature re (acc. to M3101) primary conductor d RT solder pad) older pad)	min. ±5 DC10 -40 -40 4.75 12 13 7 10	typ. 0.06 30 175 5 15	max. 1.5 1 10 105 105 115 5.25	Unit A % mV mV/°C μs kHz °C °C °C °C °C g V w MA mm mm mm	
$I_{\Delta P,max}$ X $ε_L$ V_O $\Delta V_O/\Delta \vartheta$ t_r f General da ϑ_A ϑ_S ϑ_{busbar} m V_C I_C $1^{}Sclear, pri-sec$ $1^{}Sclear, pri-sec$ $1^{}Screep, pri-sec$ $1^{}Screep, pri-pri$ $1^{}Usys, re$ $1^{}Usys, re$	N 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Max. me Accurac Linearity Offset vo Fempera Respons Frequen Ambient Permiss Mass Supply v Supply v Clearan Creepag Clearan Creepag System	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ oltage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth coperation air temperature storage temperature of p voltage current at I _P = 0A an Ce (component without so Ge (component without so Ge (component without so Ge (component without so Ce (component without s	rential current) = 25°C IP=0A, ϑ_A N Prature re (acc. to M3101) primary conductor d RT solder pad) older pad) ulation)	min. ±5 DC10 -40 -40 4.75 12 13 7 10	typ. 0.06 30 175 5 15	max. 1.5 1 10 105 105 105 115 5.25 600 1000	Unit A % mV mV/°C μs kHz °C °C °C °C g V mA mm mm mm mm Mm	
$I_{\Delta P,max}$ X ε _L V _O $\Delta V_O/\Delta \vartheta$ tr f General da ϑ_A ϑ_S ϑ_{busbar} m Vc I_C $^{1)}S_{clear, pri-sec}$ $^{1)}S_{creep, pri-sec}$ $^{1)}S_{creep, pri-sec}$ $^{1)}S_{creep, pri-pri}$ $^{1)}S_{creep, pri-pri}$ $^{1)}U_{sys, re}$ $^{1)}U_{work, re}$ $^{1)}U_{PD}$	N I	Max. me Accurac Linearity Offset vo Fempera Respons Frequen Ambient Permiss Mass Supply v Supply v Clearan Creepag System Working Rated di	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ oltage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth coperation air temper ible temperature of p voltage current at I _P = 0A an Ce (component without s Ge (component without s Ce (component without s	rential current) = $25^{\circ}C$ IP=0A, ϑ_A N erature re (acc. to M3101) primary conductor d RT solder pad) older pad) ulation) sulation)	min. ±5 DC10 -40 -40 4.75 12 13 7 10	typ. 0.06 30 175 5 15	max. 1.5 1 10 105 105 105 115 5.25 600 1000 1414	Unit A % % mV mV/°C μs kHz °C °C °C °C °C °C °C °C °C % W mA mm mm mm VRMS VRMS VRMS	
$\begin{tabular}{ llllllllllllllllllllllllllllllllllll$	M A L C T F F A A A A A A A A A A A A A	Max. me Accurac Linearity Offset vo Fempera Respons Frequen Ambient Permiss Mass Supply v Supply v Clearan Creepag Clearan Creepag System Working Rated di System	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ oltage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth coperation air temperature ible temperature of I voltage current at I _P = 0A an Ce (component without so Ge (component without so	rential current) = $25^{\circ}C$ IP=0A, ϑ_A Prature re (acc. to M3101) primary conductor d RT solder pad) older pad) older pad) ulation) sulation) son)	min. ±5 DC10 -40 -40 4.75 12 13 7 10	typ. 0.06 30 175 5 15	max. 1.5 1 10 105 105 105 115 5.25 600 1000 1414 1500	Unit A % % mV mV/°C µs kHz °C °C °C °C g V mA mm mm mm mm VRMS VRMS VPEAK VRMS	
$I_{\Delta P,max}$ X $ε_L$ V _O $\Delta V_O/\Delta \vartheta$ tr f General da ϑ_A ϑ_S ϑ_{busbar} m V _C I _C 1)Sclear, pri-sec 1)Sclear, pri-sec 1)Sclear, pri-sec 1)Sclear, pri-sec 1)Sclear, pri-sec 1)Sclear, pri-sec 1)Sclear, pri-sec 1)Sclear, pri-sec 1)Sclear, pri-sec 1)Sclear, pri-sec 1)Usys, re 1)Usys, basic 1)UpD 1)Usys, basic 1)Uwork, basic 1)Constructed	Image: Constraint of the second sec	Max. me Accurac Linearity Offset vo Fempera Respons Frequen Ambient Ambient Permiss Mass Supply v Clearan Creepag Clearan Creepag Clearan Creepag System Working Masted di System	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ oltage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth coperation air temper storage temperature ible temperature of I voltage current at I _P = 0A an Ce (component without so ge (component without so ge (component without so ge (reinforced insolation voltage (reinforced insolation voltage (basic insulation voltage (basic insulation)	rential current) = $25^{\circ}C$ IP=0A, ϑ_A Prature re (acc. to M3101) primary conductor d RT solder pad) older pad) ulation) sulation) on) on) cordance with IEC 61800-5	min. ±5 DC10 -40 -40 -40 12 13 7 10 	typ. 0.06 30 175 5 15	max. 1.5 1 10 105 105 105 115 5.25 600 1000 1414 1500 2500	Unit A % % mV mV/°C µs kHz °C °C °C °C °C °C g V mA mm mm mm mm VRMS VRMS VRMS VPEAK VRMS VRMS	
$I_{\Delta P,max}$ X $ε_L$ V _O $\Delta V_O/\Delta \vartheta$ tr f General da ϑ_A ϑ_S ϑ_{busbar} m Vc I_C $1)S_{clear, pri-sec}$ $1)S_{creep, pri-sec}$ $1)S_{creep, pri-sec}$ $1)S_{creep, pri-sec}$ $1)S_{creep, pri-sec}$ $1)U_{sys, re}$ $1)U_{work, re}$ $1)U_{vork, re}$ $1)U_{vork, basic}$ $1)U_{work, basic}$ $1)U_{work, basic}$ 1)Constructer Insulation restricts	A A A A A A A A A A A A A A A A A A A	Max. me Accurac inearity Offset vo Fempera Respons Frequen Ambient Ambient Permiss Mass Supply v Supply o Clearan Creepag System Working Rated di System Working manufac I group 1	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ oltage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth : operation air temper : storage temperature ible temperature of p voltage current at I _P = 0A an Ce (component without s Ce (component without s C	rential current) = $25^{\circ}C$ IP=0A, ϑ_A Perature re (acc. to M3101) primary conductor d RT solder pad) older pad) ulation) sulation) sulation) cordance with IEC 61800-5 Dvervoltage category III	min. ±5 DC10 -40 -40 -40 4.75 12 13 7 10 	typ. 0.06 30 175 5 15	max. 1.5 1 10 105 105 105 115 5.25 600 1000 1414 1500 2500	Unit A % % mV mV/°C μs kHz °C °C °C °C °C g V mA mm mm mm mm VRMS VPEAK VRMS VRMS	
$ \Delta P, max $ \mathcal{E}_L \mathcal{V}_O $\Delta V_O / \Delta \vartheta$ tr f General da ϑA ϑS $\vartheta busbar$ m $\mathcal{V}C$ lc 1)Sclear, pri-sec 1)Sclear, pri-sec 1)Sclear, pri-pri 1)Screep, pri-sec 1)Screep, pri-pri 1)Screep, pri-pri 1)Uyep 1)Uyes, re 1)Uyes, basic 1)Constructer Insulation re Date	N A L C F B F F A F A F B C	Max. me Accurac Linearity Offset vo Fempera Respons Frequen Ambient Permiss Mass Supply v Supply v Clearan Creepag Clearan Creepag Clearan Creepag System Working manufac I group 1	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ oltage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth coperation air temperature ible temperature of p voltage current at I _P = 0A an Ce (component without s ce ge Voltage (reinforced ins voltage (reinforced ins voltage (basic insulation voltage (basic insulation) voltage (basic insulation) voltage (basic insulation) voltag	rential current) = 25°C IP=0A, ϑ_A Perature (e (acc. to M3101)) primary conductor d RT solder pad) older pad) older pad) ulation) sulation) on) cordance with IEC 61800-5 Dvervoltage category III	min. ±5 DC10 -40 -40 4.75 12 13 7 10 	typ. 0.06 30 175 5 15	max. 1.5 1 10 105 105 115 5.25 600 1000 1414 1500 2500	Unit A % % mV mV/°C μs kHz °C °C °C °C g V mA mm mm mm VRMS VRMS VPEAK VRMS VRMS	
ΙΔΡ,max X εL Vo ΔVo/Δθ tr f General da ϑA ϑs ϑbusbar m Vc lc 1)Sclear, pri-sec 1)Sclear, pri-sec 1)Sclear, pri-pri 1)Sclear, pri-pri 1)Sclear, pri-pri 1)Sclear, pri-sec 1)Sclear, pri-sec 1)Usys, re 1)Uwork, re 1)Uwork, basic 1)Uwork, basic 1)Constructer Insulation r 18.02.2022	N A L C F B F B F B C	Max. me Accurac Linearity Offset vo Fempera Respons Frequen Ambient Permiss Mass Supply v Clearan Creepag Clearan Creepag Clearan Creepag System Working Rated di System Working manufac I group 1	easuring range (diffe y @ I _{PN} , $\vartheta_A = 25^{\circ}C$ oltage @ I _P = 0A, ϑ_A ature drift of V _{OUT} @ se time @ 90% of I _A cy bandwidth coperation air temper storage temperature ible temperature of I voltage current at I _P = 0A and Ce (component without so ge (compo	rential current) = 25°C IP=0A, ϑ_A N Prature re (acc. to M3101) primary conductor d RT solder pad) older pad) older pad) ulation) sulation) on) cordance with IEC 61800-5 Dvervoltage category III heet 3 changed. The color of to lange and the second	min. ±5 DC10 -40 -40 4.75 12 13 7 10 5-1:2007 the plastic mat	typ. 0.06 30 175 5 15	max. 1.5 1 10 105 105 105 115 5.25 600 1000 1414 1500 2500 Alinor change	Unit A % % mV mV/°C µs kHz °C °C °C °C °C g V mA mm mm mm mm VRMS VRMS VRMS VRMS VRMS VRMS VRMS	

Datasheet

Item no.: T60404-N4647-P985

K-No.:30261	3A Differential Current Sensor		
	For the electronic measurement of current: DC, AC, pulsed, with galvanic isolation between the primary and the secondary circuit		

Date: 18.02.2022

	the primary and the secondary circuit					
Customer: S	Standard type	Customers Part no:			Page	3 of 3
Electrical data: (investigate by a type checking) min. ty				typ.	max.	Unit
V _{C,max}	maximum supply voltage (w			6	V	
lc	Supply current with primary	current	15mA+l	∆p*Kn+V0	UT/RL	mA
lout,sc	Short circuit output current			±20		mA
Rs	Secondary coil resistance @	$\vartheta_{A} = 85^{\circ}C$		55		Ω
RP	Resistance of primary condu	uctor @ $\vartheta_{A} = 25^{\circ}C$		0.07		mΩ
R _{i,REF}	Internal resistance of referen	nce input		470		Ω
Ri,OUT	Output resistance of VOUT			470		Ω
$\Delta X_{\vartheta} / \Delta \vartheta$	Temperature drift of X @ 9A	= -40°C 85°C			400	ppm/K
$\Delta V_{\text{REF}} / \Delta \vartheta$	Temperature drift of $V_{REF} @ \vartheta_A = -40^{\circ}C \dots 85^{\circ}C$			5	50	ppm/K
$\Delta V_{O} = \Delta (V_{OUT} - V_{REF})$	Sum of any offset drift included:			10		mV
Vot	Long term drift of Vo			5		mV
Vоэ	Temperature drift of Vo @ 9		5		mV	
$\Delta V_{O}/\Delta V_{C}$	Supply voltage rejection ratio	C		4		mV/V
V _{OH} V _{OH, Demag}	Hysteresis of $V_{OUT} @ I_P = 0$ Hysteresis after Degaussing	(after an overload of 800x $I_{\Delta N})$		25 5	40 15	mV
Voss	Offsetripple (without externa	l filter)		32		mV _{PP}
Voss	Offsetripple (with 70 kHz-Fill	er, first order)		15		mV_{PP}
Voss	Offsetripple (with 1.6 kHz-Fi	lter, first order)		0.6		тV _{PP}
	Mechanical stress according Settings: 10-2000Hz, 1min/0) to M3209/3 Dctave, 2 hours		2		g

Routine Tests: (Measurement after temperature balance of the samples at room temperature, SC=significant characteristic)

V _{OUT} (SC)	(100%) M3011/6	Output voltage	1182 1218	mV
Vo	(100%) M3226	Offset voltage	±10	mV
Ud	(100%) M3014	Test voltage, 1s	1.8	kV _{RMS}
U _{PDE} U _{PDE} *1.875	(AQL 1/S4) M3024	Partial discharge voltage (extinction)	1.5 1.875	kV _{RMS}

Type Tests: (Precondition acc. M3236, Tested between primary and secondary circuit)

Ûw, basic	M3064	HV Impulse voltage (1.2µs/50µs wave form) 5 pulses -> polarity +, 5 pulses -> polarity -	10.5	kV
U _{d, basic}	M3014	Test voltage, 60s	5	kV _{RMS}
U _{PDE} U _{PDE} *1.875	M3024	Partial discharge voltage (extinction)	1.5 1.875	kV _{RMS}

Other instructions

- A positive output voltage appears at point V_{OUT} vs. V_{REF}, if primary current flows in direction of the arrow.
- Requirement to fulfil UL requirements: operation temperature range: -40 ... 70°C
- Housing and bobbin material UL-listed: Flammability class 94V-0.
- Housing without red phosphorous.
- Further standards: UL 508 file E317483, category NMTR2 / NMTR8
- The color of the plastic material is not specified and the current sensor can be supplied in different colors (e.g. brown, black, white, natural). This has no effect on the specifications or UL approval

Editor: R&D-PD NPI D	Designer: DJ	MC-PM: NSch.		Released: SB